Geoelectrical Tomography of Cangar Hot Springs Area, Arjuno-Welirang Complex Stone

Fajar Rakhmanto, Sukir Maryanto, Adi Susilo

Abstract


Have been research geothermal of Arjuno Welirang area of East Java with geoelectric resitivity tomography. Geoelectric tomography was performed by VES (Vertical Electrical Sonding) and Mapping. Acquisition of data totaled 7 points of VES and 4 tracks Mapping was located surrounding the hot springs.

Results of geoelectric resistivity modeling showed the resistivity of rock layers the carrier fluid (water) heat <10 Ohm.meter, while a layer of carrier fluid (water) was worth 10-100 Ohm.meter. The hot fluid coming from the direction of CR4 and CR3 are located in the south from the hot springs with a depth of 24.7 meters from the ground CR 3 (see Figure 5) which alleged a layer of sand, with layers of lava rock in the form of heat source at depth 34 meters. Mapping the results of modeling that consists of 4 tracks show around hot springs artifacts crack / crack is suspected as a medium to hot water flow out of the ground surface, precisely located at CANGAR_LINE1.


Keywords


Tomography, geoelectric, geothermal, Arjuno-Welirang, Cangar, VES, Mapping

Full Text:

PDF

References


Citrosiswoyo, W. (2008), Geothermal: Dapat mengurangi ketergantungan bahan bakar fosil dalam menyediakan listrik negara, http://www.migas-indonesia.com/files/article/Geothermal,Sumber_Energi_Masa_Depan.pdf. accessed at February 8th 2011.

Santoso, D. (2002), Pengantar Teknik Geofisika, ITB, Bandung.

Kasbani, E. S., Dahlan (2007), Kesiapan Data Potensi Panas Bumi Indonesia dalam Mendukung Penyiapan Wilayah Kerja, Pemaparan Hasil kegiatan Lapangan dan Non Lapangan Tahun 2007.

Suhanto, E. and Kasbani (2007), Deliniation of Propest Ares and Reservoir Structure of Jaboi Geothermal Area as Mapped from Resistivity Data. 32th HAGI,36th IAGI,29th IATMI Annual Conference and ExhibitionNusa Dua.

Serpen, U., E. K. and dan N. Aksoy (2005), 3D Visualization of Geothermal Features, Proceedings World Geothermal Congress 2005 Antalya, Turkey. 1-6.

Sugianto, A. and Bakrun (2010), Interpretation of DC Resistivity Data to Recognized Geothermal Prospect at Sampuraga, North Sumatera, Indonesia, Proceedings World Geothermal Congress 2010 25-29 April 2010, Bali, Indonesia. 1-5.

Karlsdottir, R. and O. G. Flovenz (2010), How the Use of Tem Changed the Resistivity Model of Oxarfjordur Temperature Field from an Earlier Dc Survey - a Case History Proceedings World Geothermal Congress 2010 25-29 April 2010, Bali, Indonesia. 1-12.

Anonymous (2008), Resistivity Methods: Earth Properties and Basic Theory, Lab. Geofisika Unibraw, Malang.

Telford, Geldart and Sheriff (1976), Applied Geophysics 2nd edition, Cambridge University Press, New York.

Verma, R. K. and T. K. Bandyopadhyay (1983), Use of the resistivity method in geological mapping.

Pozdnyakova, L. (1999), Electrical Properties of Soils Desertasi, Department of Renewable Resources, University of Wyoming, Laramie.

Banton, O., M. K. Seguin and M. A. Cimon, (1997), Mapping field-scale physical properties of soil with electrical resistivity, Soil Science Society of America Journal. 61: 1010-1017.

Storz, H., W. STORZ and F. JACOBS (2000), Electrical Resistivity Tomography to Investigate Geological Structures of The Earth’s Upper Crust, Geophysical Prospecting, 48: 455-471.

Suzuki, K., S. Toda, K. Kusunoki, Y. Fujimitsu, T. Mogi and A. Jomori (2000), Case Studies of Electrical and Electromagnetic Methods Applied to Mapping Active Faults Beneath the Thick Quaternary, Engineering Geology, 56: 29-45.

Demanet, D., E. Pirard, F. Renardy and D. Jongmans (2001), Application and processing of geophysical images for mapping faults, Computers & Geosciences, 27: 1031-1037

Caputo, R., S. Piscitelli, A. Oliveto, E. Rizzo and V.Lapenna (2003), The Use of Electrical Resistivity Tomographies in Active Tectonics: Examples from the Tyrnavos Basin, Greece, Journal of Geodynamics. 36: 19-35

Nguyen, F., S. Garambois, D. Jongmans, E. Pirard and M. H. Loke (2005), Image Processing of 2D Resistivity Data for Imaging Faults, Journal of Applied Geophysics. 57: 260-277.

Galli, P., V. Bosi, S. Piscitelli, A. Giocoli, V. Scionti, I. J., Earth Sci. (Geol Rundsch), 855-870, doi: dan 10.1007/s00531-005-0066-2. 2006, Late Holocene Earthquakes in Southern Apennines: Paleoseismology of the Caggiano Fault. Earth Science Internal Journal. 95: 855-870

Giocoli, A., C. Magri, p. Vannoli, S. Pascitelli, E. Rizzo, A. Siniscalchi, P. Burrato, C. Basso and S. D. Nocera (2008), Electrical Resistivity Tomography Investigation in the Ufita Valley (Southern Italy) Annals of Geophysics, 51 (1): 213-223, February 2008.

Diaferia, T., T. Barchi, M. Loddo, D. Schiavone and A.Siniscalchi (2006), Detailed Imaging of Tectonic Structures by Multiscale Earth Resistivity Tomographies: the Colfiorito Normal Faults (Central Italy), Geophysical Research Letters: 33.

Rizzo, E., A. Colella, V. Lapenna and S. Piscitelli (2004), High-resolution Images of The Fault-controlled High Agri Valley Basin (Southern Italy) with Deep and Shallow Electrical Resistivity Tomographies, Physics and Chemistry of the Earth, 29: 321-327.

Maio, R. D., P. Mauriello, D. Patella, Z. Petrillo, S.Piscitelli dan A. Siniscalchi (1998), Electric and Electromagnetic Outline of the Mount Somma-Vesuvius Structural Setting, Journal Volcanology Geothermal Research, 82 (1-4): 219-238.

Finizola, A., A. Revil, E. Rizzo, S. Pscitelli, T. Ricci, J.Morin, B. Anggeletti, L. Mocochain and F. Sortino (2006), Hydrogeological Insights at Stromboli Volcano (Italy) from Ggeoelectrical, Temperature, and CO2 Soil Degassing Investigations, Geophysic Research Letter, 33.




DOI: http://dx.doi.org/10.21776/ub.natural-b.2011.001.02.14

Refbacks

  • There are currently no refbacks.