Analisis Kesehatan Mangrove di Probolinggo Menggunakan Data Sentinel-2A
Abstract
Probolinggo is one of the regencies which is directly adjacent to the Madura Strait and this area has a coastal area of around 71,893 Km. This long coastal area cause the area has high risk of coastal abrasion, so that monitoring of the condition of mangrove forests is needed to prevent the abrasion. In the coastal areas of probolinggo mangrove forests are used into purposes fields such as tourism, disaster prevention, education and conservation. To maximize the role of the mangrove forests, the analysis of mangrove health analysis in Probolinggo is very important to do. Because of the large research area, the utilization of remote sensing becomes an important alternative method. This study utilizes Sentinel-2A satellite imagery using the supervised classification method for area classification and the Normalized Different Vegetation Index method to classify mangrove health. Based on the results of the supervised classification analysis, the accuracy test using overall accuracy gives the accuracy result of 96.57% and from the mangrove health classification it is known that most of the mangroves in Probolinggo are in good health with a percentage of 75.75% of the total mangrove area i.e 367.04 hectares . Further research on the correlation of mangrove health to water quality is suggested to get more complex information about mangrove health.
Keywords
Full Text:
PDFReferences
Bappeda Kabupaten Probolinggo (2013), Rencana Pembangunan Jangka Menengah Daerah. http://bappeda.probo linggokab.go.id/uploads/documents/2._BAB_II_GAMBARAN_UMUM_KONDISI_DAERAHrev_.pdf. [Diakses pada 23 Februari 2018].
Sakti, T.P. (2018), Evaluasi Penggunaan Kawasan Hutan Menggunakan Citra Sentinel-2 di Wilayah Pesisir Kabupaten Deli Serdang. Skripsi. Universitas Sumatra Utara.
Wayan, I.E.D. & Pramudji (2014), Panduan Monitoring Starus Ekosistem Mangrove, PT. Sarana Komunikasi Utama, Bogor.
Wardani, S.H., T. Rismawan, and S. Bahri (2016), Aplikasi Klasifikasi Jenis Tumbuhan Mangrove Berdasarkan Karakteristik Morfologi Menggunakan Metode K-Nearest Neighbor (KNN) Berbasis Web. J. Coding, Sistem Komputer Untan., 04. 9-21.
Samiyarsih, S., T. Brata., and Juwarno (2016), Karakter Anatomi Daun Tumbuhan Mangrove Akibar Pencemaran di Hutan Mangrove Kabupaten Cilacap. Biosfera., 33, 31-36.
Fawzi, N. (2016) Mangrove (Karakteristik, Pemetaan, dan Pengolahannya). Yogyakarta: Sibuku Media.
Carbenas, N.Y., K.E. Joyce, and S.W. Maier (2017), Monitoring mangrove forests: Are we taking full advantage of technology ?. International Journal of Applied Earth Observation and Geoinformation., 63, 1-14.
Nowo, D.M. (2008), Aplikasi Teknologi Penginderaan Jauh dan Uji Validasinya untuk Deteksi Penyebaran Lahan Sawah dan Penggunaan/PenutupanLahan.
ESA. (2015), Sentinel-2 User Handbook. European Space Agency. Issue 1 Revision 2.
Putri, D.R., A. Sukmono., and B. Sudarsono (2018), Analisis Kombinasi Citra Sentinel-1A dan Citra Sentinel-2A untuk Klasifikasi Tutupan Lahan (Study Kasus: Kabupaten Demak, Jawa Tengah). J. Geodesi Undip., 7.
Nawir, D. (2013), Peranan Penginderaan Jauh untuk Mengidentifikasi Wilayah Pesisir dan Kelautan, J. Harpodon Borneo., 6, 67-72.
Kawamuna, A., A. Suprayogi, dan A.P. Wijaya (2017), Analisis Kesehatan Hutan Mangrove Berdasarkan Metode Klasifikasi NDVI pada Citra Sentinel-2. J. Geodesi Undip., 6.
Sudiana, D., dan E. Diasmara. 2008. Analisis Indeks Vegetasi menggunakan Data Satelit NOAA/AVHRR dan TERRA/AQUA-MODIS. Seminar on Intelligent Technology and Its Applications 2008.
Kusumaningrum, T.E., and B.M. Sukojo (2013), Analisa Kesehatan Mangrove Berdasarkan Nilai Normalized Difference Vegetation Index Menggunakan Citra ALOS AVNIR-2. J. Teknik Pomits., 10.
Arifilla, A. (2018), Analisis Usia Tanaman Padi Berdasarkan Nilai NDVI Menggunakan Citra Landsat-8 (Studi Kasus: Desa Rambigundam Kecamatan Rambipuji Jember). Skripsi. Faakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.
Haris, R. (2014), Keanekaragaman Vegetasi dan Satwa Liar Hutan Mangrove. J. Bionature., 15, 117-118.
Refbacks
- There are currently no refbacks.